*Arens, T. et al., 2018. Mathematik. **4. Hrsg. s.l.:Springer.*

*Gentle, J. E. (2002). Random Walks Ch.3. In J. E. Gentle, Elements of Computational Statistics (p. 41 von 420). Springer.*

*Gregory F. Lawler, V. L. (2010). Random Walk: A Modern Introduction. Cambridge Studies in Advanced Mathematics, Band 123.*

*Haugh, M. (2010). Introduction to Stochastic Calculus. Financial Engineering: Continuous-Time Models, 18.*

*Horst Rottmann, B. A. (2010). Statistik und Ökonometrie für Wirtschaftswissenschaftler – Eine anwendungsorientierte Einführung. Gabler.*

*James L. Cornette, B. S. (2004). Random walks in the history of life. PNAS, 187–191.*

*Klenke, A. (2008). Probability Theory. London: Springer.*

*Konstantopoulos, T. (2009). MARKOV CHAINS AND RANDOM WALKS. Introductory lecture notes. University of Liverpool.*

*Nelson, E. (August 2001). Dynamical Theories of Brownian Motion. Princeton University Press.*

*Oksendal, B. (2013). Stochastic Differential Equations – An Introduction with Applications. Springer.*

*Peter Mörters, Y. P. (März 2010). Brownian Motion. Cambridge Series in Statistical and Probabilistic Mathematics, Band 30.*

*Saloff-Coste, L. (2004). Random Walks on Finite Groups. Probability on Discrete Structures , pp 263-346.*

*Sazonov, V. (2011, Februar 7). Encyclopedia of Mathematics. Retrieved from http://www.encyclopediaofmath.org/index.php?title=Measure&oldid=29871*

*Sousi, P. (October 2013). Advanced Probability. UK: University of Cambridge.*

*Szabados, T. (August 1994). An Elementary Introduction to the Wiener Process and Stochastic Integrals. Technical University of Budapest, 45.*

* *

*Images and graphical content are taken from "wikimedia commons" database and are licensed using a CC-license if not states otherwise. If no reference is granted, the content belongs to the author.*

*Otherwise used Images and graphical content:*

*abstract painting art artistic von Anni Roenkae (Pexels Lizenz)*